National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Modified nucleotides and DNA for electrochemical labelling and defined display of small molecules
Krömer, Matouš ; Hocek, Michal (advisor) ; Křen, Vladimír (referee) ; Vrábel, Milan (referee)
This thesis is focused on enzymatic construction of DNA probes for electrochemical labelling, bioconjugations and, in the final part, building on knowledge gathered in previous chapters, it describes a method useful for construction of highly functionalized base-modified DNA enabling defined multivalent display of glycosides. In first chapter, a chemical route to diol-bearing nucleotides was found. Sonogashira reaction facilitated access to alkyne-tethered diols and subsequent catalytic hydrogenation, described for the first time in the literature, provided protection-free method for obtaining nucleotide diols tethered via flexible sp3 hybridized linker. Cleavage of alkane-linked, but not alkyne-linked, nucleotide diols yielded aliphatic nucleotide aldehyde. All nucleotides were found to be good substrates for KOD XL DNA polymerase in both primer extension and polymerase chain reaction, apart from aldehyde-linked dUCHO TP nucleotide, which performed well in PEX reaction, but gave PCR products only in a mixture with natural dTTP. This could be overcome by cleavage of diol-modified DNA, which also yielded aldehyde-functionalized dsDNA. All reactive probes were examined for bioconjugations with fluorescent hydrazine, reductive amination with lysine or lysine-containing peptides or other molecules...
Polymerase construction of base-modified DNA for chemical biology
Hocek, Michal ; Macíčková-Cahová, Hana ; Kielkowski, Pavel ; Raindlová, Veronika ; Kalachová, Lubica ; Riedl, Jan ; Balintová, Jana ; Ménová, Petra
An efficient two-step methodology for construction of base-modified DNA was developed based on aqueous-phase cross-coupling reactions of halogenated nucleoside triphosphates (dNTPs) followed by polymerase incorporation. A number of diverse chemical modifications have been successfully incorporated in this way for the use in chemical biology (modulation of cleavage by restriction enzymes, interactions with diverse DNA-binding proteins and bioconjugations).

Interested in being notified about new results for this query?
Subscribe to the RSS feed.